Sample of an assignment for students. (You can of course construct a number of other interesting investigations to suit your students and your course.)

For each of the following answer the result of the expression involving reversal matrices. Some answers require a matrix (M), others require a verbal description (V) of the type of matrix. Write the expression and answer on a sheet of paper. (Don't say it is a n by n matrix as an answer.)

1.
$$\mathbf{J_4^T} = \underline{\hspace{1cm}}(\mathbf{M})$$

2.
$$J_4^T = is a_{\underline{\hspace{1cm}}} type of matrix.(V)$$

3.
$$J_4^2 = is$$
 _____(M)

4.
$$J_4^{-1} = is a_{---}$$
 type of matrix. (V)

5.
$$J_4^T * J_4 = is$$
 _____(M)

6. $J_4 = is a_{\underline{}} type of matrix. (V) Hint: use answer to 5$

7.
$$J_4 + I_4 = is$$
 _____(M)

8. Let
$$W = J_4 + I_4$$
. Find $rref(W) =$ _____(M)

9. Use the answer of #8 to find a basis for the null space of $\mathbf{W} = \mathbf{J_4} + \mathbf{I_4}$.

The basis will be a set of vectors. Answer: ______

10. Given that
$$\mathbf{v}=\begin{bmatrix}0\\1\\1\\0\end{bmatrix}$$
 is an eigenvector of $\mathbf{J_4}$. Find the corresponding eigenvalue.

$$\lambda =$$
 _____. Hint, just recall $\mathbf{J_4} * \mathbf{v} = \lambda * \mathbf{v}$.

11. In linear algebra, the **trace** of a square matrix \mathbf{A} , denoted $\mathrm{tr}(\mathbf{A})$, is the sum of the elements on its main diagonal, $a_{11}+a_{22}+\cdots+a_{nn}$. It is only defined for a square matrix (n × n). Use the table below to conjecture a formula for $tr(\mathbf{J_n})$, n a positive interger.

	•				
n	3	4	5	6	7
$tr(J_n)$	1	0	1	0	1

Answer:____

12. Use the table below to conjecture a formula for $det(\mathbf{J_n})$, n a positive interger.

	, .							
n	2	3	4	5	6	7	8	9
$det(J_n)$	-1	-1	1	1	-1	-1	1	1

Answer:_____

13. Use the table below to conjecture a formula for $tr(\mathbf{W_n} = \mathbf{J_n} + \mathbf{I_n})$, n a positive interger.

n	3	4	5	6	7	8	9	10
$tr(W_n)$	4	4	6	6	8	8	10	10

Answer:_____

14. The $det(\mathbf{W_n} = \mathbf{J_n} + \mathbf{I_n})$ for n a positive interger is zero.

Construct ${\bf W_n}$ for n = 3, 4, 5, and 6. Then conjecture why $det({\bf W_n})=0)$ for all n.

Answer:_____