1.**J**₄^T = _____

2. From 1), conclude that **J**₄ is a(n) _____matrix.

3. $J_4^2 =$ _____

4. From 3), conclude that $J_4^{-1} =$ _____

5. $J_4^T J_4 =$ _____

6. From 5), conclude that J_4 is a(n) _____ matrix.

7. Use the MATLAB command **eig** to obtain the eigenvalues of J_4 : they are _____ and _____.

8. J₄ – eye(4) =

9. $rref(J_4 - eye(4)) =$

_____·

10. A basis of the null space of J₄ - eye(4) is

11. From 10), conclude that the eigenvectors of $J_4 - eye(4)$ corresponding to $\lambda = 1$ are ______.

12. Denote J_4 in MATLAB by J and use the MATLAB command [V D] = eig(J). Another set of eigenvectors corresponding to $\lambda = 1$ is ______.

13. J₄ + eye(4) =

14. $rref(J_4 + eye(4)) =$

_____·

15. A basis of the null space of **J**₄ + **eye(4)** is

16. From 15), conclude that the eigenvectors corresponding to $\lambda = -1$ are ______ .

17. Denote J_4 in MATLAB by J and use the MATLAB command [V D] = eig(J). Another set of eigenvectors corresponding to $\lambda = -1$ is ______. 18. Write a one-line MATLAB program to define, and then display, the 6×6 reversal matrix J_6 . The reversal matrix can be denoted by J in the program.

19. $J_6^T =$ _____ 20. **J**₆ is a(n) _____ matrix. 21. J₆² = _____ 22. $J_6^{-1} =$ 23. $J_6^T J_6 =$ _____ 24. **J**₆ is a(n) _____ matrix. 25. The eigenvalues of J_6 are _____ and _____. 26. $J_6 - eye(6) =$ 27. $rref(J_6 - eye(6)) =$ 28. A basis of the null space of $J_6 - eye(6)$ is 29. From 28), conclude that the eigenvectors of $J_6 - eye(6)$ corresponding to $\lambda = 1$ are _____. 30. Denote J_6 in MATLAB by J and use the MATLAB command [V D] = eig(J). Another set of eigenvectors corresponding to $\lambda = 1$ is _____. 31. $J_6 + eye(6) =$ 32. rref $(J_6 + eye(6)) =$ 33. A basis of the null space of J₆ + eye(6) is 34. The eigenvectors of $J_6 + eye(6)$ corresponding to $\lambda = -1$ are _____.

35. Denote \mathbf{J}_6 in MATLAB by \mathbf{J} and use the MATLAB command

[V D] = eig(J). Another set of eigenvectors corresponding to $\lambda = -1$ is ______.

36. Repeat Exercises 18 – 35 for the 8 \times 8 reversal matrix $J_8.$

37. Use the results of Exercises 7, 25, and 36 to form a conjecture about the eigenvalues of an $n \times n$ reversal matrix J_n for even numbers n (n = 2k where k is a positive integer).

38. Use the results of Exercises 12, 17, 29, 34, and 36 to form a conjecture about the eigenvectors of an n×n reversal matrix J_n for even numbers n.

39. Use the experience gained from Exercises 1 to 38 to form a conjecture about the eigenvalues and eigenvectors of an n×n reversal matrix J_n for odd numbers n of the form n = 2k + 1.